SIRS: the BUGS view
Prof Mark Schembri
School of Chemistry & Molecular Biosciences, UQ
m.schembri@uq.edu.au

Meningococcal septicaemia
Hemorrhagic purpura due to disseminated intravascular coagulation

Bacterial features associated with dissemination

• Serum is CIDAL
 • Some bacteria are resistant to bactericidal action of serum
 – Gram negatives
 Capsule
 O Antigen of LPS
 – Gram positives
 Capsule
 Thick peptidoglycan layer

Gram negative cell wall

Gram-negative bacterial cell wall
Lipopolysaccharide (LPS)

O ANTIGEN

Oligosaccharide (sugars vary from species to species within genus)
Oligosaccharide (sugars are constant for each genus)
Lipid A (toxic)
Peptidoglycan
Antigenic and toxic
Lipopolysaccharide structure

![Image of LPS structure]

Important part of LPS for pathogenicity

- Smooth: +
- Rough: -

Serum resistance

<table>
<thead>
<tr>
<th>E. coli strain</th>
<th>+ O Ag</th>
<th>Serum</th>
<th>Lysis</th>
<th>Resistant to lysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Smooth</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Classical pathway
- Antibody binds to specific antigen on the bacterial surface

Alternative pathway
- Pathogen surface allows complement activation (Ab independent)

Lectin pathway
- Mannose binding protein binds to mannose on the bacterial surface

COMPLEMENT ACTIVATION

Opsonization → Cytolysis → Inflammation

The complement cascade

- **Opsonization**: Coating with C3b, enhanced phagocytosis
- **Inflammation**: Increase in blood vessel permeability, chemotactic attraction of phagocytes
- **Cytolysis**: Membrane attack complex

Assembly of the Membrane Attack Complex

How does complement kill Gram-negative bacteria?

1. **Complement proteins form holes in the bacterial cell wall**
 - Damage to OM and IM

2. **Influx of fluids and salts**

3. **Bacterium expands and bursts**
Bacterial properties that provide serum resistance

- Certain OAg’s protect bacteria from phagocytosis & cidal action of serum
 - smooth E. coli more resistant in serum assays than rough
 - degree of resistance proportional to LPS content
 - E. coli serotypes (O7, O8, O18) associated with septicemia survive better in serum

- Long side chains project OAg away from bacterial surface
 - Antibody reactions occur away from cell surface
 - less likely to have lytic effect
 - damage may occur but thick supportive LPS coat prevents lethality

- OAg masks underlying bacterial surface molecules that activate complement

Sepsis and bacterial cell lysis

- Autolysis
- Rapid and massive release of endotoxin

N. meningitidis

ENDOTOXIN

In small amounts

- Kupffer cells
- Increase in IL-1, TNF, IL-6
- Fever
- Activation of alternative pathway
- Inflammation

In large amounts

- All of the above plus shock and intravascular coagulation

LPS (endotoxin) is a powerful immune stimulus

- Gram -ve LPS
- LPS lysis
- CD14
- TLR4
- MABC attack
- Cytokines
 - IL-1, IL-6, IL-8, TNF-a
- Blood clotting
 - Coagulation pathway
 - Complement pathway
 - Opsonization
 - Inflammation

Some clinical conditions in which endotoxin has been implicated

- Septic shock
- Liver disease
- Inflammatory bowel disease
- Acute renal failure
- Glomerulonephritis
- Adult respiratory distress syndrome
- Major abdominal trauma
- Neonatal necrotising enterocolitis
- Radiation injury
- Toxic shock syndrome
If LPS is so toxic, why can't we simply vaccinate against it?

- Different types
 - Salmonella: 1 core (2000 O types)
 - E. coli: 6 cores (150 O types)
- Endotoxin not directly exposed
- Normal flora
 - Gram negatives in the gut
- Keeps immune system alert to infection
 - 1 E. coli cell contains ~ 5 x 10^6 LPS molecules

Gram Positive Shock

- Approx 50% of cases of sepsis and septic shock are caused by G+ves
- G+ve virulence factors that induce shock
 - Lipoteichoic acid
 - Peptidoglycan
 - Exotoxins
- Purified components can induce sepsis and septic shock
- Synergism
 - LTA and PGN?
 - Endotoxin from G+ve?

Gram positive cell wall components stimulate the immune system

- Gram +ve
- LTA
- PGN
- CD14
- TLR2
- Induction
- Lysis
- Blood clotting
- Inflammation
- Opsonization
- Cytokines
 - IL-1, IL-6, IL-8, TNF-α
- Coagulation pathway
- Complement pathway
- CD14

Exotoxins

- Secreted bacterial toxins
- Bound to surface and released upon lysis
- Mechanisms of action
 - Spreading factors that facilitate dispersal
 - Active killing of host cells by destroying their membranes
 - Prevention of protein synthesis
 - Alteration of normal cell function
 - Blocking of nerve function
 - Superantigens

Microbial Superantigens

- Protein exotoxins
- Trigger a non-specific T cell response
- Damage by induction of hypersensitivity reactions
- Examples of Superantigens:
 - Staphylococcus aureus toxic shock syndrome toxin
 - Staphylococcal enterotoxins
 - Streptococcus pyogenes erythrogenic toxin
Activation of T cell by bacterial antigens

Antigen-mediated T cell activation
- Antigen specific T cell clone
- Activation (1 in 10⁵)
- TCR
- Antigen presentation cell

Superantigen-mediated T cell activation
- T cells of a specific TCR type
- Activation (1 in 5)
- TCR
- Superantigen
- Antigen presentation cell

Differences between G-ve and G+ve sepsis

<table>
<thead>
<tr>
<th>Gram negatives</th>
<th>Gram positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triggers</td>
<td>LPS (endotoxin)</td>
</tr>
<tr>
<td>Signaling mechanism</td>
<td>TLR4</td>
</tr>
<tr>
<td>Evidence</td>
<td>Purified LPS mimics</td>
</tr>
<tr>
<td>Source of bacteria</td>
<td>GI, genitourinary tract</td>
</tr>
<tr>
<td>Bacterial killing</td>
<td>Killed by Complement and Antibody</td>
</tr>
</tbody>
</table>

Net host response is the same

Potential sites of action in adjunctive therapies for septic shock

1. **Endotoxin and other bacterial products**
 - Responsive cells: Macrophages, Neutrophils, Endothelium
 - Release of secondary inflammatory mediators:
 - Cystokines, Prostanoids, Leukotrienes, PAFs, Kinins
 - Activation of coagulation
 - Complement activation
 - Hypotension
 - Vasodilation, Myocardial depression
 - Tissue damage:
 - Hypoxia, Neutrophil migration, reactive oxygen metabolites, Proteolytic enzymes

 Further cellular activation
 - 1. Prevent activation of host cells
 - 2. Inhibition of secondary mediators
 - 3. Limit organ damage